

Your conflating surface-level architectural limits with core functional behaviour. Yes, an LLM is deterministic at temperature 0 and produces the same output for the same input, but that does not make it equivalent to a Markov chain. A Markov chain defines transitions based on fixed-order memory and static probabilities. An LLM generates output by applying a series of matrix multiplications, activations, and attention-weighted context aggregations across multiple layers, where the representation of each token is conditioned on the entire input sequence, not just on recent tokens.
While the model has a maximum token limit, it does not receive a fixed-length input filled with nulls. It processes variable-length input sequences up to the context limit, and attention masks control which positions are used. These are not hardcoded state transitions; they are dynamically computed weightings over continuous embeddings, where meaning arises from the interaction of tokens, not from simple position or order alone.
Saying that output diversity is just randomness misunderstands why random sampling exists: to explore the rich distribution the model has learned from data, not to fake intelligence. The depth of its output space comes from how it models relationships, hierarchies, syntax, and semantics through training. Markov chains do not do any of this. They map sequences to likely next symbols without modeling internal structure. An LLM’s output reflects high-dimensional reasoning over the prompt. That behavior cannot be reduced to fixed transition logic.
This argument collapses the entire distinction between parametric modeling and symbolic lookup. Yes, the weights are fixed after training, but the key point is that an LLM does not store or retrieve a state transition table. It learns to approximate the probability of the next token given a sequence through function approximation, not by memorizing discrete transitions. What appears to be a “table” is actually a deep, distributed representation compressed into continuous weight matrices. It is not indexing state transitions, it is computing probabilities from patterns in the input space.
A true Markov chain defines transition probabilities over explicit states. An LLM embeds tokens into high-dimensional vectors, then transforms them repeatedly using self-attention and feedforward layers that can capture subtle syntactic, semantic, and structural features. These features interact in nonlinear ways that go far beyond what any finite transition table could express. You cannot meaningfully represent an LLM’s behavior as a finite Markov model, even in principle, because its representations are not enumerable states but regions of a continuous latent space.
Saying “you just need all token combinations in a table” ignores the fact that the model generalizes to combinations never seen during training. That is the core of its power. It doesn’t look up learned transitions-it constructs responses by interpolating through an embedding space guided by attention and weight structure. No Markov chain does this. A lossy compressor of a transition table still implies a symbolic map; a neural network is a differentiable function trained to fit a distribution, not to encode it explicitly.